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1 Metrizibility and Normability of LCSs and The Geometric
Hahn-Banach Theorem

1.1 Metrizable locally convex spaces
When is a LCS topology metrizable?

Theorem 1.1. Let X be a LCS. Then X is metrizable (with a translation invariant metric)
if and only if its topology can be generated by a countable family of seminorms.

Proof. Suppose the topology is generated by (py)n. Define

= —n pn(x—y)
D e

For every € > 0 and N € N, there is a § > 0 such that

N
{y:d(x,y) <5} S ({y:pale—y) <e}.

n=1
Conversely, for any € > 0 and N € N such that

N
{y:d(x,y) <5} 2 ({y:pale—y) <e}.

n=1

Now assume d is a translation invariant metric generating the topology of X. Then {z :
d(0,z) < 1/n} for n € N form a neighborhood base at 0. Let P be any family of seminorms
generating the topology. Then for any n, there exist seminorms py 1,...,pn N, € P and
€n > 0 such that

ﬂ{x tpni(x) <en} C{z:d(0,2) < 1/n}.
i=1

Now Py = Uy 1{pn1;s-- -, Pnn,} is countable and generates the same topology. O



Example 1.1. C(R") has the metric

= 15, — slalls
d(f,g) := 27" z n )
(9= 2 2 e g

Definition 1.1. A TVS is a Fréchet space if its topology can be generated by a complete,
translation invariant metric.

1.2 Normable locally convex spaces

When does a LCS have a norm?

Definition 1.2. A C X is bounded if for any neighborhood U > 0, there is an € > 0 such
that U D A.

Theorem 1.2. A LCS X is normable if and only if it has a nonempty, open, bounded
neighborhood of 0.

Proof. Let B be a nonempty, open, bounded subset B > 0. By openness, there is a
continuous seminorm p such that B O {p < ¢} for some e. We can assume that B D
{p < 1}. We must show that p generates the topology. Let ¢ be another continuous
seminorm on X, and consider {¢ < §}. By boundedness, there exists some ¢ > 0 such that
e{p <1} ={p <e} C{qg<d}. So p generates the topology. Since an LCS must separate
points, p must actually be a norm. O

1.3 The geometric Hahn-Banach theorem

Since continuous linear functionals make sense for LCS spaces, we still denote the dual
space as X*. It will have a topology, but we will not discuss which topology yet.

Proposition 1.1. Let f: X — F be a linear functional. The following are equivalent:
1. f s continuous.
2. f is continuous at 0.
3. f is continuous at some point.
4. ker f is closed
5.z — |f(z)] is a continuous seminorm.
If X is an LCS generated by P, then also iff

6. There exist p1,...,pp € P and a,. .., 0 € [0,00) such that |f| <> 0 cip;.



Proof. (5) = (2): f is continuous at 0 iff for every € > 0, the set {x : |f(x)| < e} is a
neighborhood of 0.
(5) = (6): For any € > 0, there exist p1,...,p, € P and Si,..., 5, > 0 such that

{71 < e} 2 M < Bi}- So If] < w5 S .

Proposition 1.2. Let X be a TVS, and let G C X be an open, convex neighborhood of
0. Then q(x) := inf{t > 0:tG > x} is a nonnegative continuous sublinear functional (and

G ={g<1}).

Theorem 1.3 (Geometric Hahn-Banach theorem). Let X be a TVS, and let G C X be a
nonempty, open, convex set with G Z 0. Then there is a closed hyperplane M C X such
that M NG = @.

Proof. Suppose F = R. Let zg € G, and let H := G — xg be an open, convex neighborhood
of 0. Then 0 € H, but —xg ¢ H; as H is convex, tH # —z¢ for any 0 < ¢t < 1.
Let q(x) := inf{t > 0 : tH > z} as in the proposition. Then g(—zp) > 1. Now let
Y = span{—xzg}. Then ¢g:Y — R with g(—z¢) = 1 is a continuous linear functional, and
Hahn-Banach gives a linear f : X — R such that f(—xz¢) =1, | f| < ¢; so f is continuous.
Now {f =1} N H = @, so ker(f) NG = &. So pick M = ker(f).

In the case F = C, applied the theorem to X (viewed as a vector space over R). We get a
continuous R-linear f : X — R such that ker(f)NG = @. Construct g(x) := f(x)—if(ix),
which is a complex linear functional. Then ker g = (ker f) Ni(ker f). O

Corollary 1.1. Let X is a TVS, Y C X be a closed affine subspace, and G # 0 be an
open convex subset with Y NG # @. Then there is a closed affine hyperplane M DY such
that M NG = 2.

Proof. Suppose 0 € Y. Consider the quotient map @ : X — X/Y. Then Q(G) is an
open, convex subset of X/Y with Q(G) # 0. Find a hyperplane M C M/Y such that
MNQ(G) =, and let M := Q[M].

If 0 ¢ Y, do the same with a translation. O

1.4 Half-spaces and separated sets

Definition 1.3. In a real TVS an open half-space is a is a set of the form {f > a} for
some f € X* and o € R. A closed half-space is a is a set of the form {f > a} for some
feX*and a € R.

Definition 1.4. A, B C X are separated of there exist closed half-spaces H, K such that
ACH, BCK, and HN K is an affine hyperplane. A and B are strictly separated if
there are open half-spaces H O A and K O B with HN K = &@.

Theorem 1.4. Half-spaces and separated sets have the following properties:



1. The closure of an open half-space is a closed half-space.
2. The interior of a closed half-space is an open half-space.

3. If A, B are separated, then there exists an f € X* and o € R such that f|a < a and
flB = a.

4. If A, B are strictly separated, then there exists an f € X* and o € R such that
fla < aand f|lp > a.

Theorem 1.5. Let X be a real TVS, and let A, B be disjoint, conver sets with A open.
Then there exist an f € X* and o € R such that fla < «, f|lp > a. If B is also open,
then A and B are strictly separated.

We will get this as a consequence of geometric Hahn-Banach next time.
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