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1 Metrizibility and Normability of LCSs and The Geometric
Hahn-Banach Theorem

1.1 Metrizable locally convex spaces

When is a LCS topology metrizable?

Theorem 1.1. Let X be a LCS. Then X is metrizable (with a translation invariant metric)
if and only if its topology can be generated by a countable family of seminorms.

Proof. Suppose the topology is generated by (pn)n. Define

d(x, y)
∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y)
.

For every ε > 0 and N ∈ N, there is a δ > 0 such that

{y : d(x, y) < δ} ⊆
N⋂
n=1

{y : pn(x− y) < ε}.

Conversely, for any ε > 0 and N ∈ N such that

{y : d(x, y) < δ} ⊇
N⋂
n=1

{y : pn(x− y) < ε}.

Now assume d is a translation invariant metric generating the topology of X. Then {x :
d(0, x) < 1/n} for n ∈ N form a neighborhood base at 0. Let P be any family of seminorms
generating the topology. Then for any n, there exist seminorms pn,1, . . . , pn,Nn ∈ P and
εn > 0 such that

n⋂
i=1

{x : pn,i(x) < εn} ⊆ {x : d(0, x) < 1/n}.

Now P0 =
⋃∞
n=1{pn,1, . . . , pn,Nn} is countable and generates the same topology.
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Example 1.1. C(Rn) has the metric

d(f, g) :=
∞∑
n=1

2−n
‖f |Bn − g|Bn‖∞

1 + ‖f |Bn − g|Bn‖∞
.

Definition 1.1. A TVS is a Fréchet space if its topology can be generated by a complete,
translation invariant metric.

1.2 Normable locally convex spaces

When does a LCS have a norm?

Definition 1.2. A ⊆ X is bounded if for any neighborhood U 3 0, there is an ε > 0 such
that U ⊇ εA.

Theorem 1.2. A LCS X is normable if and only if it has a nonempty, open, bounded
neighborhood of 0.

Proof. Let B be a nonempty, open, bounded subset B 3 0. By openness, there is a
continuous seminorm p such that B ⊇ {p < ε} for some ε. We can assume that B ⊇
{p < 1}. We must show that p generates the topology. Let q be another continuous
seminorm on X, and consider {q < δ}. By boundedness, there exists some ε > 0 such that
ε{p < 1} = {p < ε} ⊆ {q < δ}. So p generates the topology. Since an LCS must separate
points, p must actually be a norm.

1.3 The geometric Hahn-Banach theorem

Since continuous linear functionals make sense for LCS spaces, we still denote the dual
space as X∗. It will have a topology, but we will not discuss which topology yet.

Proposition 1.1. Let f : X → F be a linear functional. The following are equivalent:

1. f is continuous.

2. f is continuous at 0.

3. f is continuous at some point.

4. ker f is closed

5. x 7→ |f(x)| is a continuous seminorm.

If X is an LCS generated by P, then also iff

6. There exist p1, . . . , pn ∈ P and α1, . . . , αn ∈ [0,∞) such that |f | ≤
∑n

i=1 αipi.
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Proof. (5) =⇒ (2): f is continuous at 0 iff for every ε > 0, the set {x : |f(x)| < ε} is a
neighborhood of 0.

(5) =⇒ (6): For any ε > 0, there exist p1, . . . , pn ∈ P and β1, . . . , βn > 0 such that
{|f | < ε} ⊇

⋂n
i=1{pi < βi}. So |f | < ε∑

i βi

∑
i pi.

Proposition 1.2. Let X be a TVS, and let G ⊆ X be an open, convex neighborhood of
0. Then q(x) := inf{t ≥ 0 : tG 3 x} is a nonnegative continuous sublinear functional (and
G = {q < 1}).

Theorem 1.3 (Geometric Hahn-Banach theorem). Let X be a TVS, and let G ⊆ X be a
nonempty, open, convex set with G 63 0. Then there is a closed hyperplane M ⊆ X such
that M ∩G = ∅.

Proof. Suppose F = R. Let x0 ∈ G, and let H := G−x0 be an open, convex neighborhood
of 0. Then 0 ∈ H, but −x0 /∈ H; as H is convex, tH 63 −x0 for any 0 ≤ t < 1.
Let q(x) := inf{t ≥ 0 : tH 3 x} as in the proposition. Then q(−x0) ≥ 1. Now let
Y = span{−x0}. Then g : Y → R with g(−x0) = 1 is a continuous linear functional, and
Hahn-Banach gives a linear f : X → R such that f(−x0) = 1, |f | ≤ q; so f is continuous.
Now {f = 1} ∩H = ∅, so ker(f) ∩G = ∅. So pick M = ker(f).

In the case F = C, applied the theorem to X (viewed as a vector space over R). We get a
continuous R-linear f : X → R such that ker(f)∩G = ∅. Construct g(x) := f(x)− if(ix),
which is a complex linear functional. Then ker g = (ker f) ∩ i(ker f).

Corollary 1.1. Let X is a TVS, Y ⊆ X be a closed affine subspace, and G 6= 0 be an
open convex subset with Y ∩G 6= ∅. Then there is a closed affine hyperplane M ⊇ Y such
that M ∩G = ∅.

Proof. Suppose 0 ∈ Y . Consider the quotient map Q : X → X/Y . Then Q(G) is an
open, convex subset of X/Y with Q(G) 63 0. Find a hyperplane M ⊆ M/Y such that
M ∩Q(G) = ∅, and let M := Q−1[M ].

If 0 /∈ Y , do the same with a translation.

1.4 Half-spaces and separated sets

Definition 1.3. In a real TVS an open half-space is a is a set of the form {f > α} for
some f ∈ X∗ and α ∈ R. A closed half-space is a is a set of the form {f ≥ α} for some
f ∈ X∗ and α ∈ R.

Definition 1.4. A,B ⊆ X are separated of there exist closed half-spaces H,K such that
A ⊆ H, B ⊆ K, and H ∩K is an affine hyperplane. A and B are strictly separated if
there are open half-spaces H ⊇ A and K ⊇ B with H ∩K = ∅.

Theorem 1.4. Half-spaces and separated sets have the following properties:
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1. The closure of an open half-space is a closed half-space.

2. The interior of a closed half-space is an open half-space.

3. If A,B are separated, then there exists an f ∈ X∗ and α ∈ R such that f |A ≤ α and
f |B ≥ α.

4. If A,B are strictly separated, then there exists an f ∈ X∗ and α ∈ R such that
f |A < α and f |B > α.

Theorem 1.5. Let X be a real TVS, and let A,B be disjoint, convex sets with A open.
Then there exist an f ∈ X∗ and α ∈ R such that f |A < α, f |B ≥ α. If B is also open,
then A and B are strictly separated.

We will get this as a consequence of geometric Hahn-Banach next time.

4


	Metrizibility and Normability of LCSs and The Geometric Hahn-Banach Theorem
	Metrizable locally convex spaces
	Normable locally convex spaces
	The geometric Hahn-Banach theorem
	Half-spaces and separated sets


