Math 255A' Lecture 9 Notes

Daniel Raban

October 16, 2019

1 Metrizibility and Normability of LCSs and The Geometric Hahn-Banach Theorem

1.1 Metrizable locally convex spaces

When is a LCS topology metrizable?

Theorem 1.1. Let X be a LCS. Then X is metrizable (with a translation invariant metric) if and only if its topology can be generated by a countable family of seminorms.

Proof. Suppose the topology is generated by $(p_n)_n$. Define

$$d(x,y)\sum_{n=1}^{\infty} 2^{-n} \frac{p_n(x-y)}{1+p_n(x-y)}.$$

For every $\varepsilon > 0$ and $N \in \mathbb{N}$, there is a $\delta > 0$ such that

$$\{y: d(x,y) < \delta\} \subseteq \bigcap_{n=1}^{N} \{y: p_n(x-y) < \varepsilon\}.$$

Conversely, for any $\varepsilon > 0$ and $N \in \mathbb{N}$ such that

$$\{y: d(x,y) < \delta\} \supseteq \bigcap_{n=1}^{N} \{y: p_n(x-y) < \varepsilon\}.$$

Now assume d is a translation invariant metric generating the topology of X. Then $\{x : d(0,x) < 1/n\}$ for $n \in \mathbb{N}$ form a neighborhood base at 0. Let \mathcal{P} be any family of seminorms generating the topology. Then for any n, there exist seminorms $p_{n,1}, \ldots, p_{n,N_n} \in \mathcal{P}$ and $\varepsilon_n > 0$ such that

$$\bigcap_{i=1}^{n} \{x : p_{n,i}(x) < \varepsilon_n\} \subseteq \{x : d(0,x) < 1/n\}.$$

Now $\mathcal{P}_0 = \bigcup_{n=1}^{\infty} \{p_{n,1}, \dots, p_{n,N_n}\}$ is countable and generates the same topology.

Example 1.1. $C(\mathbb{R}^n)$ has the metric

$$d(f,g) := \sum_{n=1}^{\infty} 2^{-n} \frac{\|f|_{B_n} - g|_{B_n}\|_{\infty}}{1 + \|f|_{B_n} - g|_{B_n}\|_{\infty}}.$$

Definition 1.1. A TVS is a **Fréchet space** if its topology can be generated by a complete, translation invariant metric.

1.2 Normable locally convex spaces

When does a LCS have a norm?

Definition 1.2. $A \subseteq X$ is **bounded** if for any neighborhood $U \ni 0$, there is an $\varepsilon > 0$ such that $U \supseteq \varepsilon A$.

Theorem 1.2. A LCS X is normable if and only if it has a nonempty, open, bounded neighborhood of 0.

Proof. Let *B* be a nonempty, open, bounded subset $B \ni 0$. By openness, there is a continuous seminorm *p* such that $B \supseteq \{p < \varepsilon\}$ for some ε . We can assume that $B \supseteq \{p < 1\}$. We must show that *p* generates the topology. Let *q* be another continuous seminorm on *X*, and consider $\{q < \delta\}$. By boundedness, there exists some $\varepsilon > 0$ such that $\varepsilon\{p < 1\} = \{p < \varepsilon\} \subseteq \{q < \delta\}$. So *p* generates the topology. Since an LCS must separate points, *p* must actually be a norm.

1.3 The geometric Hahn-Banach theorem

Since continuous linear functionals make sense for LCS spaces, we still denote the dual space as X^* . It will have a topology, but we will not discuss which topology yet.

Proposition 1.1. Let $f: X \to \mathbb{F}$ be a linear functional. The following are equivalent:

- 1. f is continuous.
- 2. f is continuous at 0.
- 3. f is continuous at some point.
- 4. ker f is closed
- 5. $x \mapsto |f(x)|$ is a continuous seminorm.
- If X is an LCS generated by \mathcal{P} , then also iff
 - 6. There exist $p_1, \ldots, p_n \in \mathcal{P}$ and $\alpha_1, \ldots, \alpha_n \in [0, \infty)$ such that $|f| \leq \sum_{i=1}^n \alpha_i p_i$.

Proof. (5) \implies (2): f is continuous at 0 iff for every $\varepsilon > 0$, the set $\{x : |f(x)| < \varepsilon\}$ is a neighborhood of 0.

(5) \implies (6): For any $\varepsilon > 0$, there exist $p_1, \ldots, p_n \in \mathcal{P}$ and $\beta_1, \ldots, \beta_n > 0$ such that $\{|f| < \varepsilon\} \supseteq \bigcap_{i=1}^n \{p_i < \beta_i\}$. So $|f| < \frac{\varepsilon}{\sum_i \beta_i} \sum_i p_i$.

Proposition 1.2. Let X be a TVS, and let $G \subseteq X$ be an open, convex neighborhood of 0. Then $q(x) := \inf\{t \ge 0 : tG \ni x\}$ is a nonnegative continuous sublinear functional (and $G = \{q < 1\}$).

Theorem 1.3 (Geometric Hahn-Banach theorem). Let X be a TVS, and let $G \subseteq X$ be a nonempty, open, convex set with $G \not\supseteq 0$. Then there is a closed hyperplane $M \subseteq X$ such that $M \cap G = \emptyset$.

Proof. Suppose $\mathbb{F} = \mathbb{R}$. Let $x_0 \in G$, and let $H := G - x_0$ be an open, convex neighborhood of 0. Then $0 \in H$, but $-x_0 \notin H$; as H is convex, $tH \not\supseteq -x_0$ for any $0 \leq t < 1$. Let $q(x) := \inf\{t \geq 0 : tH \ni x\}$ as in the proposition. Then $q(-x_0) \geq 1$. Now let $Y = \operatorname{span}\{-x_0\}$. Then $g : Y \to \mathbb{R}$ with $g(-x_0) = 1$ is a continuous linear functional, and Hahn-Banach gives a linear $f : X \to \mathbb{R}$ such that $f(-x_0) = 1$, $|f| \leq q$; so f is continuous. Now $\{f = 1\} \cap H = \emptyset$, so $\ker(f) \cap G = \emptyset$. So pick $M = \ker(f)$.

In the case $\mathbb{F} = \mathbb{C}$, applied the theorem to X (viewed as a vector space over \mathbb{R}). We get a continuous \mathbb{R} -linear $f: X \to \mathbb{R}$ such that $\ker(f) \cap G = \emptyset$. Construct g(x) := f(x) - if(ix), which is a complex linear functional. Then $\ker g = (\ker f) \cap i(\ker f)$.

Corollary 1.1. Let X is a TVS, $Y \subseteq X$ be a closed affine subspace, and $G \neq 0$ be an open convex subset with $Y \cap G \neq \emptyset$. Then there is a closed affine hyperplane $M \supseteq Y$ such that $M \cap G = \emptyset$.

Proof. Suppose $0 \in Y$. Consider the quotient map $Q : X \to X/Y$. Then Q(G) is an open, convex subset of X/Y with $Q(G) \not\supseteq 0$. Find a hyperplane $\overline{M} \subseteq M/Y$ such that $\overline{M} \cap Q(G) = \emptyset$, and let $M := Q^{-1}[M]$.

If $0 \notin Y$, do the same with a translation.

1.4 Half-spaces and separated sets

Definition 1.3. In a real TVS an open **half-space** is a set of the form $\{f > \alpha\}$ for some $f \in X^*$ and $\alpha \in \mathbb{R}$. A closed **half-space** is a set of the form $\{f \ge \alpha\}$ for some $f \in X^*$ and $\alpha \in \mathbb{R}$.

Definition 1.4. $A, B \subseteq X$ are **separated** of there exist closed half-spaces H, K such that $A \subseteq H, B \subseteq K$, and $H \cap K$ is an affine hyperplane. A and B are **strictly separated** if there are open half-spaces $H \supseteq A$ and $K \supseteq B$ with $H \cap K = \emptyset$.

Theorem 1.4. Half-spaces and separated sets have the following properties:

- 1. The closure of an open half-space is a closed half-space.
- 2. The interior of a closed half-space is an open half-space.
- 3. If A, B are separated, then there exists an $f \in X^*$ and $\alpha \in \mathbb{R}$ such that $f|_A \leq \alpha$ and $f|_B \geq \alpha$.
- 4. If A, B are strictly separated, then there exists an $f \in X^*$ and $\alpha \in \mathbb{R}$ such that $f|_A < \alpha$ and $f|_B > \alpha$.

Theorem 1.5. Let X be a real TVS, and let A, B be disjoint, convex sets with A open. Then there exist an $f \in X^*$ and $\alpha \in \mathbb{R}$ such that $f|_A < \alpha$, $f|_B \ge \alpha$. If B is also open, then A and B are strictly separated.

We will get this as a consequence of geometric Hahn-Banach next time.